First, excluded values would be when the denominator is equal to 0 or:
10h^2z^3 = 0 or when h = 0 or z = 0
First, rewrite the expression as:
(3 xx 2)/(5 xx 2)(h^3/h^2)(z/z^3) =>
(3 xx color(red)(cancel(color(black)(2))))/(5 xx color(red)(cancel(color(black)(2))))(h^3/h^2)(z/z^3) =>
3/5(h^3/h^2)(z/z^3)
Next, use these rules of exponents to simplify the h terms:
x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b)) and a^color(red)(1) = a
3/5(h^color(red)(3)/h^color(blue)(2))(z/z^3) =>
3/5(h^(color(red)(3)-color(blue)(2)))(z/z^3) =>
3/5(h^1)(z/z^3) =>
3/5(h)(z/z^3) =>
(3h)/5(z/z^3)
Now, use these rules of exponents to simplify the z term:
a = a^color(red)(1) and x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))
(3h)/5(z/z^3) =>
(3h)/5(z^color(red)(1)/z^color(blue)(3)) =>
(3h)/5(1/z^(color(blue)(3)-color(red)(1))) =>
(3h)/5(1/z^2) =>
(3h)/(5z^2)