Prove that x^((logy-logz))y^((logz-logx))z^((logx-logy))=1?

3 Answers
Mar 20, 2017

Please see the explanation.

Explanation:

Prove:

x^(log_10(y)-log_10(z))y^(log_10(z)-log_10(x))z^(log_10(x)-log_10(y))=1

Use the base 10 logarithm on both sides:

log_10(x^(log_10(y)-log_10(z))y^(log_10(z)-log_10(x))z^(log_10(x)-log_10(y)))=log_10(1)

The right side becomes 0:

log_10(x^(log_10(y)-log_10(z)))+log_10(y^(log_10(z)-log_10(x)))+log_10(z^(log_10(x)-log_10(y)))=0

Use the property of logarithms log_b(a^(c-d)) = log_b(a)(c-d)

log_10(x)(log_10(y)-log_10(z))+log_10(y)(log_10(z)-log_10(x))+log_10(z)(log_10(x)-log_10(y))=0

Use the distributive property on all of the parenthesis:

log_10(x)log_10(y)-log_10(x)log_10(z)+log_10(y)log_10(z)-log_10(y)log_10(x)+log_10(z)log_10(x)-log_10(z)log_10(y))=0

Begin canceling terms:

cancel(log_10(x)log_10(y))-log_10(x)log_10(z)+log_10(y)log_10(z)cancel(-log_10(y)log_10(x))+log_10(z)log_10(x)-log_10(z)log_10(y))=0

cancel(-log_10(x)log_10(z))+log_10(y)log_10(z)cancel(+log_10(z)log_10(x))-log_10(z)log_10(y))=0

cancel(+log_10(y)log_10(z))cancel(-log_10(z)log_10(y))=0

0 = 0

Q.E.D.

Mar 20, 2017

Please see below for the proof.

Explanation:

We will not be writing base as 10, hence logp=log_10p

Now let x^a=y^b, then alogx=blogy

and b=axxlogx/logy

Hence x^(logy-logz)=y^((logy-logz)xxlogx/logy)

and z^(logx-logy)=y^((logx-logy)xxlogz/logy)

and hence

x^((logy-logz))y^((logz-logx))z^((logx-logy))

= y^(((logy-logz)xxlogx/logy))y^((logz-logx))y^(((logx-logy)xxlogz/logy))

= y^[((logy-logz)xxlogx/logy)+(logz-logx)+(((logx-logy)xxlogz/logy))]

= y^[logx-(logzlogx)/logy+logz-logx+(logxlogz)/logy-logz]

= y^0=1

Mar 20, 2017

See below.

Explanation:

x^log(y/z) y^log(z/x) z^log(y/x)=1

or

log(y/z)log(x)+log(z/x)log(y)+log(y/x)log(z)=0

or

(y/z)^log(x)(z/x)^log(y) (x/y)^log(z)=1

or

x^log(z/y)y^log(x/z) z^log(y/x)=1=x^log(y/z) y^log(z/x) z^log(y/x)=x^-log(z/y)y^-log(x/z) z^-log(y/x)

then

x^log(z/y)y^log(x/z) z^log(y/x)=1/(x^log(z/y)y^log(x/z) z^log(y/x)

so

x^log(z/y)y^log(x/z) z^log(y/x)=1 is an identity.