How do you simplify (sqrt5+sqrt3)/(sqrt3-sqrt55+335?

1 Answer
Mar 21, 2017

-(4+sqrt(15))(4+15)

Explanation:

Expression =(sqrt5+sqrt3)/(sqrt3-sqrt5=5+335

To simplify the expression we first need to rationalise the denominator.

Remember: (a+b)(a-b) = a^2-b^2(a+b)(ab)=a2b2

Hence: (sqrta+sqrtb)(sqrta-sqrtb) = a-b(a+b)(ab)=ab

Multiply our expression by: (sqrt3+sqrt5)/(sqrt3+sqrt5) =13+53+5=1

:. Expression =((sqrt5+sqrt3)(sqrt3+sqrt5))/((sqrt3-sqrt5)(sqrt3+sqrt5))

= ((sqrt5+sqrt3)(sqrt3+sqrt5))/ (3-5)

= (sqrt15+5+3+sqrt15)/-2

=(8+2sqrt15)/-2

=-(4+sqrt15)