How do you solve #(2+sqrt(3))x^2+(3+sqrt(3))x+2 = 0# ?
1 Answer
Explanation:
#(2+sqrt(3))x^2+(3+sqrt(3))x+2 = 0#
is in the standard form:
#ax^2+bx+c = 0#
with
Let's look at the discriminant first...
#Delta = b^2-4ac#
#color(white)(Delta) = (3+sqrt(3))^2-4(2+sqrt(3))(2)#
#color(white)(Delta) = 9+6sqrt(3)+3-16-8sqrt(3)#
#color(white)(Delta) = -4-2sqrt(3)#
Since
We can still use the quadratic formula to find the complex solutions:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-b+-sqrt(Delta))/(2a)#
#color(white)(x) = (-3-sqrt(3)+-sqrt(-4-2sqrt(3)))/(4+2sqrt(3))#
#color(white)(x) = (-3-sqrt(3)+-i sqrt(4+2sqrt(3)))/(4+2sqrt(3))#
#color(white)(x) = ((-3-sqrt(3)+-i sqrt(4+2sqrt(3)))(2-sqrt(3)))/((4+2sqrt(3))(2-sqrt(3)))#
#color(white)(x) = ((-3-sqrt(3)+-i sqrt(2(2+sqrt(3))))(2-sqrt(3)))/2#
#color(white)(x) = (-3+sqrt(3)+-i sqrt(2(2-sqrt(3))))/2#
Note that:
#(sqrt(3)-1)^2 = sqrt(3)^2-2sqrt(3)+1 = 4-2sqrt(3)#
So:
#sqrt(2(2-sqrt(3))) = sqrt(3)-1#
So:
#x = (-3+sqrt(3)+-i (sqrt(3)-1))/2#