How do you simplify #(2sqrt(5x))/sqrt(25x^2)#?

1 Answer
Mar 29, 2017

See the solution process below:

Explanation:

We can rewrite this expression as:

#(2sqrt(5x))/(sqrt(5x)sqrt(5x))#

We can next cancel common terms in the numerator and denominator:

#(2color(red)(cancel(color(black)(sqrt(5x)))))/(color(red)(cancel(color(black)(sqrt(5x)))sqrt(5x))) =>#

#2/sqrt(5x)#

Now we can rationalize the denominator by multiplying the fraction by the appropriate form of 1:

#sqrt(5x)/sqrt(5x) xx 2/sqrt(5x) =>#

#(sqrt(5x) xx 2)/(sqrt(5x) xx sqrt(5x)) =>#

#(2sqrt(5x))/(5x)#