Question #b73a1

1 Answer
Sep 30, 2017

"The Reqd. Exp.="x/sqrt(1-x^2), |x| < 1.The Reqd. Exp.=x1x2,|x|<1.

Explanation:

Recall that, arc cos xarccosx is defined if, &, only if, |x| le 1.|x|1.

So, let arc cosx=theta, and, |x| le 1.arccosx=θ,and,|x|1.

:. costheta=x, and, theta in [0,pi].

Under the substitution,

The Reqd. Exp. is, cot theta=costheta/sintheta......(1).

costheta=x rArr sin^2theta=1-cos^2theta=1-x^2.

:. sintheta=+-sqrt(1-x^2).

But, theta in [0,pi], sintheta > 0. :. sintheta==sqrt(1-x^2).

By (1)," then, "cottheta=x/sqrt(1-x^2), x!=+-1.

rArr cot(arc cos x)=x/sqrt(1-x^2), |x| < 1.