Question #06568

2 Answers
Apr 10, 2017

#"the mass of bottle " m_("bottle") =36.19 g #

Explanation:

#m_("bottle"):"mass of bottle"#
#m_("water"):"mass of water"#

#m_("bottle")+m_("water")=60g#

#color(green)(m_("water")=60-m_("bottle"))#

#m_("mercury"):"mass of mercury"#

#m_("mercury")+m_("bottle")=360#

#color(red)(m_("mercury")=360-m_("bottle"))#

Since the density of water is 1,the mass and volume of water are equal.

#V_("water"):"Volume of water"#

The volume of water and bottle are equal.

#V_("water")=V_("bottle")#

#V_("mercury"):"Volume of mercury"#

#V_("mercury")=V_("bottle")=V_("water")#

#V_("mercury")=color(green)(60-m_("bottle"))#

#d_("mercury"):"density of mercury"#

#d_("mercury")=(m_("mercury"))/(V_("mercury"))#

#d_("mercury")=13.6" " g/(cm^(3))#

#13.6=(color(red)(360-m_("bottle")))/(color(green)(60-m_("bottle")))#

#13.6(color(green)(60-m_("bottle")))=color(red)(360-m_("bottle"))#

#816-13.6m_("bottle")=360-m_("bottle")#

#816-360=13.6m_("bottle")-m_("bottle")#

#456=12.6m_("bottle")#

#m_("bottle")=456/(12.6)#

#m_("bottle")=36.19g#

Apr 10, 2017

Let inner volume of the bottle be #v# #cm^3# and mass of empty bottle be #m# g

So by the problem

#m +"mass of "vcm^3" water"=60g#

#"mass of "vcm^3" water"=(60 -m)g#

Again

#m+"mass of "vcm^3" of Hg"=360g#

#"mass of "vcm^3" of Hg"=(360-m)g#

Now we know

#("mass of "vcm^3" of Hg")/ ("mass of "vcm^3" of water")="sp.gravity of Hg"#

#=>("mass of "vcm^3" of Hg")/ ("mass of "vcm^3" of water")=13.6#

#=>(360-m)/ (60-m)=13.6#

#=>(360-m)=(60-m)xx13.6#

#=>360-m=816-13.6m#

#=>12.6m=816-360=456#

#=>m=456/12.6~~36.2g#