How do we find equation of tangent and normal to a circle at a given point?

1 Answer
Apr 11, 2017

Equation of tangent at #(x_1,y_1)# at circle #x^2+y^2+2gx+2fy+c=0# is #x x_1+yy_1+g(x+x_1)+f(y+y_1)+c=0# and equation of normal is #(y_1+f)x-(x_1+g)y-fx_1+gy_1=0#

Explanation:

Let the circle be #x^2+y^2+2gx+2fy+c=0#,

let us seek normal and tangent at #(x_1,y_1)#

(note that #x_1^2+y_1^2+2gx_1+2fy_1+c=0#) ...(A)

as the center of the circle is #(-g,-f)#,

as normal joins #(-g,-f)# and #(x_1,y_1)# its slope is #(y_1+f)/(x_1+g)#

and equation of normal is #y-y_1=(y_1+f)/(x_1+g)(x-x_1)#

i.e. #(x_1+g)y-x_1y_1-gy_1=(y_1+f)x-x_1y_1-fx_1#

or #(y_1+f)x-(x_1+g)y-fx_1+gy_1=0#

or #(y_1+f)x-(x_1+g)y-fx_1+gy_1=0#

and as product of slopes of normal and tangent is #-1#,

slope of tangent is #-(x_1+g)/(y_1+f)# and its equation will be

#y-y_1=-(x_1+g)/(y_1+f)(x-x_1)#

or #(y-y_1)(y_1+f)+(x-x_1)(x_1+g)=0#

or #yy_1-y_1^2+fy-fy_1+x x_1-x_1^2+gx-gx_1=0#

or #x x_1+yy_1+gx+fy-(x_1^2+y_1^2+fy_1+gx_1)=0#

from (A) #x_1^2+y_1^2+fy_1+gx_1=-fy_1-gx_1-c#

Hence equation of tangent is #x x_1+yy_1+gx+fy+fy_1+gx_1+c=0#

or #x x_1+yy_1+g(x+x_1)+f(y+y_1)+c=0#