Question #07a2a

1 Answer
Apr 13, 2017

cos (14^@) + i sin (14^@)

Explanation:

De Moivre's theorem
Z^n = r^n(cos (ntheta) + i sin(ntheta))

Z^(1/3) = r^(1/3)(cos (1/3theta) + i sin(1/3theta))

Z = cos(42^@) + i sin(42^@) where r =1

root(3)Z = Z^(1/3) = cos (1/3)(42^@) + i sin (1/3)(42^@)

Z^(1/3) = cos (14^@) + i sin (14^@)