Question #a9b54

1 Answer

15/17.1517.

Explanation:

Recall that,

arctanx-arctany=arctan{(x-y)/(1+xy)}; x,y > 0........(star)

Now, f(x)=arctan(1/(x^2+x+1))=arctan{((x+1)-x)/(1+x(x+1))}

:.," by "(star), f(x)=arctan(x+1)-arctanx,.......(ast)

rArr A=f(1)+f(2)+f(3)+...+f(14)+f(15)

={arctan2-arctan1}+{arctan3-arctan2}+{arctan4-arctan3}+... +{arctan15-arctan14}+{arctan16-arctan15},

:. A=arctan16-arctan1

=arctan{(16-1)/(1+16*1)},....[because, (star)]

:. A=arctan(15/17)

rArr tanA=15/17.

Enjoy Maths.!