Recall that,
arctanx-arctany=arctan{(x-y)/(1+xy)}; x,y > 0........(star)
Now, f(x)=arctan(1/(x^2+x+1))=arctan{((x+1)-x)/(1+x(x+1))}
:.," by "(star), f(x)=arctan(x+1)-arctanx,.......(ast)
rArr A=f(1)+f(2)+f(3)+...+f(14)+f(15)
={arctan2-arctan1}+{arctan3-arctan2}+{arctan4-arctan3}+...
+{arctan15-arctan14}+{arctan16-arctan15},
:. A=arctan16-arctan1
=arctan{(16-1)/(1+16*1)},....[because, (star)]
:. A=arctan(15/17)
rArr tanA=15/17.
Enjoy Maths.!