Question #d9ce7
1 Answer
Jun 1, 2017
Explanation:
Use the ‘Clausius - Clapeyron Equation’ with
VP_1 = "760 mm Hg" @T_1 = "373 K"
VP_2 = "19 mm Hg" @T_2 = ?
R = "8.314 J/mol"cdot"K" = "0.008314 kJ/mol"cdot"K"
∆H_(vap) = "40.67 kJ/mol" .
And so:
ln((VP_2)/(VP_1)) = ((∆H_(vap))/R)[1/T_1 – 1/T_2]
ln(19/760) = (40.67/0.008314)[1/373 – 1/(T_2)]
ln(0.025) = (4865)[0.0027 – 1/T_2] = 13.04 – 4865/T_2
=> -3.69 = 13.04 - 4865/T_2
Rearrange to solve for
T_2 = [(4865)/(13.04 + 3.69)]"K"
= (4865/16.73) "K" = "291 K"
Or in
T_2 = (291 - 273)""^@"C"
= 17.8^@ "C"