Question #73fd2

1 Answer
Apr 27, 2017

See proof below

Explanation:

We need

(a+b)(a-b)=a^2-b^2

sin^2x+cos^2x=1

cos(x+y)=cosxcosy-sinxsiny

cos(x-y)=cosxcosy+sinxsiny

sin(x+y)=sinxcosy+sinycosx

sin(x-y)=sinxcosy-sinycosx

Therefore,

cos(x+y)*cos(x-y)=(cosxcosy-sinxsiny)(cosxcosy+sinxsiny)

=cos^2xcos^2y-sin^2xsin^2y

sin(x+y)*sin(x-y)=(sinxcosy+sinycosx)(sinxcosy-sinycosx)

=sin^2xcos^2y-sin^2ycos^2x

So,

LHS=cos(x+y)*cos(x-y)+sin(x+y)*sin(x-y)

=cos^2xcos^2y-sin^2xsin^2y+sin^2xcos^2y-sin^2ycos^2x

=cos^2y(cos^2x+sin^2x)-sin^2y(sin^2x+cos^2x)

=cos^2y-sin^2y

=LHS

QED