We need
(a+b)(a-b)=a^2-b^2
sin^2x+cos^2x=1
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
sin(x+y)=sinxcosy+sinycosx
sin(x-y)=sinxcosy-sinycosx
Therefore,
cos(x+y)*cos(x-y)=(cosxcosy-sinxsiny)(cosxcosy+sinxsiny)
=cos^2xcos^2y-sin^2xsin^2y
sin(x+y)*sin(x-y)=(sinxcosy+sinycosx)(sinxcosy-sinycosx)
=sin^2xcos^2y-sin^2ycos^2x
So,
LHS=cos(x+y)*cos(x-y)+sin(x+y)*sin(x-y)
=cos^2xcos^2y-sin^2xsin^2y+sin^2xcos^2y-sin^2ycos^2x
=cos^2y(cos^2x+sin^2x)-sin^2y(sin^2x+cos^2x)
=cos^2y-sin^2y
=LHS
QED