Evaluate the integral int \ x^2(x^3-1)^4 \ dx ?

1 Answer
May 3, 2017

int \ x^2(x^3-1)^4 \ dx = 1/15(x^3-1)^5 + C

Explanation:

We want to find:

I = int \ x^2(x^3-1)^4 \ dx

We can perform a simple substitution; Let

u = x^3-1 => (du)/dx = 3x^2

If we perform the substitution then we get:

I = int \ 1/3u^4 \ du

So we can now integrate to get:

I = 1/3*1/5u^5 + C
\ \ = 1/15 u^5 + C

And restoring the substitution we get:

I = 1/15(x^3-1)^5 + C