Evaluate the integral int \ x^2(x^3-1)^4 \ dx ?
1 Answer
May 3, 2017
int \ x^2(x^3-1)^4 \ dx = 1/15(x^3-1)^5 + C
Explanation:
We want to find:
I = int \ x^2(x^3-1)^4 \ dx
We can perform a simple substitution; Let
u = x^3-1 => (du)/dx = 3x^2
If we perform the substitution then we get:
I = int \ 1/3u^4 \ du
So we can now integrate to get:
I = 1/3*1/5u^5 + C
\ \ = 1/15 u^5 + C
And restoring the substitution we get:
I = 1/15(x^3-1)^5 + C