Using Hess's law, determine the enthalpy change for the overall reaction?
(i) "H"_3"BO"_3(aq) -> "HBO"_2(aq) + "H"_2"O"(l) , DeltaH_1 = -"0.02 kJ/mol"
(ii) "H"_2"B"_4"O"_7(aq) + "H"_2"O"(l) -> 4"HBO"_2(aq) , DeltaH_2 = -"11.3 kJ/mol"
(iii) "H"_2"B"_4"O"_7(aq) -> 2"B"_2"O"_3(s) + "H"_2"O"(l) , DeltaH_3 = "17.5 kJ/mol"
(i) "H"_3"BO"_3(aq) -> "HBO"_2(aq) + "H"_2"O"(l) ,DeltaH_1 = -"0.02 kJ/mol"
(ii) "H"_2"B"_4"O"_7(aq) + "H"_2"O"(l) -> 4"HBO"_2(aq) ,DeltaH_2 = -"11.3 kJ/mol"
(iii) "H"_2"B"_4"O"_7(aq) -> 2"B"_2"O"_3(s) + "H"_2"O"(l) ,DeltaH_3 = "17.5 kJ/mol"
1 Answer
Aug 11, 2017
Explanation:
The given equation can be obtained by
2xx(i)-((ii))/2+((iii))/2 ,
since we have:
2("H"_3"BO"_3(aq) -> cancel("HBO"_2(aq)) + "H"_2"O"(l))
-1/2 (cancel("H"_2"B"_4"O"_7(aq)) + "H"_2"O"(l) -> cancel(4"HBO"_2(aq)))
1/2 (cancel("H"_2"B"_4"O"_7(aq)) -> 2"B"_2"O"_3(s) + "H"_2"O"(l))
So,
DeltaH=2*(-0.02)-((-11.3))/2+((17.5))/2
=>DeltaH=+14.36 kJ*mol^-1