Question #ad6b0

1 Answer
Jun 3, 2017

The vector is veca=2sqrt5veci+sqrt5vecj-5veckj

Explanation:

Let the veca be

veca=a_xveci+a_yvecj+a_zveck

We are given

a_x=2a_y

and

cos135º =a_z/(||veca||)

||veca||=sqrt(a_x^2+a_y^2+a_z^2)=5sqrt2

cos 135=-sqrt2/2=a_z/(5sqrt2)

=>, a_z=-sqrt2/2*5sqrt2=-5

Therefore,

a_x^2+a_y^2+a_z^2=(5sqrt2)^2

a_x^2+a_y^2=50-25=25

4a_y^2+a_y^2=25

a_y^2=25/5=5

a_y=sqrt5

a_x=2sqrt5

So,

veca=2sqrt5veci+sqrt5vecj-5veckj