Question #a648f

1 Answer
Jun 7, 2017

Q-1

The projection or component of vecAA along vecBB is (vecA*vecB)/absvecB^2vecBABB2B

So the component of veca=3hati+4hatja=3ˆi+4ˆj along the direction of hati+hatjˆi+ˆj will be

((3hati+4hatj)*(hati+hatj))/abs(hati+hatj)^2(hati+hatj)(3ˆi+4ˆj)(ˆi+ˆj)ˆi+ˆj2(ˆi+ˆj)

=(3+4)/(sqrt2)^2(hati+hatj)=3+4(2)2(ˆi+ˆj)

=7/2(hati+hatj)=72(ˆi+ˆj)

And the component of veca=3hati+4hatja=3ˆi+4ˆj along the direction of hati-hatjˆiˆj will be

((3hati+4hatj)*(hati-hatj))/abs(hati-hatj)^2(hati-hatj)(3ˆi+4ˆj)(ˆiˆj)ˆiˆj2(ˆiˆj)

=(3-4)/(sqrt2)^2(hati-hatj)=34(2)2(ˆiˆj)

=-1/2(hati-hatj)=12(ˆiˆj)

Q-2

Let (x,y) (x,y) be the cartesian coordinates of the point A represeted by the radius vector vecr=athati-bt^2hatjr=atˆibt2ˆj

So x=at and y=-bt^2x=atandy=bt2

Eliminating t from above relation we get

y=-b(x/a)^2y=b(xa)2

=>y=-b/a^2x^2y=ba2x2

=>x^2=-a^2/byx2=a2by

This is the equation of the trajectory represented by the radius vector vecr=athati-bt^2hatjr=atˆibt2ˆj