Q-1
The projection or component of vecA→A along vecB→B is (vecA*vecB)/absvecB^2vecB→A⋅→B∣∣∣→B∣∣∣2→B
So the component of veca=3hati+4hatj→a=3ˆi+4ˆj along the direction of hati+hatjˆi+ˆj will be
((3hati+4hatj)*(hati+hatj))/abs(hati+hatj)^2(hati+hatj)(3ˆi+4ˆj)⋅(ˆi+ˆj)∣∣ˆi+ˆj∣∣2(ˆi+ˆj)
=(3+4)/(sqrt2)^2(hati+hatj)=3+4(√2)2(ˆi+ˆj)
=7/2(hati+hatj)=72(ˆi+ˆj)
And the component of veca=3hati+4hatj→a=3ˆi+4ˆj along the direction of hati-hatjˆi−ˆj will be
((3hati+4hatj)*(hati-hatj))/abs(hati-hatj)^2(hati-hatj)(3ˆi+4ˆj)⋅(ˆi−ˆj)∣∣ˆi−ˆj∣∣2(ˆi−ˆj)
=(3-4)/(sqrt2)^2(hati-hatj)=3−4(√2)2(ˆi−ˆj)
=-1/2(hati-hatj)=−12(ˆi−ˆj)
Q-2
Let (x,y) (x,y) be the cartesian coordinates of the point A represeted by the radius vector vecr=athati-bt^2hatj→r=atˆi−bt2ˆj
So x=at and y=-bt^2x=atandy=−bt2
Eliminating t from above relation we get
y=-b(x/a)^2y=−b(xa)2
=>y=-b/a^2x^2⇒y=−ba2x2
=>x^2=-a^2/by⇒x2=−a2by
This is the equation of the trajectory represented by the radius vector vecr=athati-bt^2hatj→r=atˆi−bt2ˆj