Evaluate the integral? int e^(2x) cosx dx
3 Answers
See below.
Explanation:
Using the de Moivre's identity
Taking the real part of this integral we have
I have solved with another way:
int \ e^(2x) \cosx \ dx = 2/5e^(2x)cosx + 1/5e^(2x)sinx + C
Explanation:
Let:
I = int \ e^(2x) \cosx \ dx
We can use integration by parts:
Let
{ (u,=cosx, => (du)/dx,=-sinx), ((dv)/dx,=e^(2x), => v,=1/2e^(2x) ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx
gives us
int \ (cosx)(e^(2x)) \ dx = (cosx)(1/2e^(2x)) - int \ (1/2e^(2x))(-sinx) \ dx
:. I = 1/2e^(2x)cosx + 1/2int \ e^(2x) \ sinx \ dx .... [A]
At first it appears as if we have made no progress, as now the second integral is similar to
Let
{ (u,=sinx, => (du)/dx,=cosx), ((dv)/dx,=e^(2x), => v,=1/2e^(2x) ) :}
Then plugging into the IBP formula, gives us:
int \ (sinx)(e^(2x)) \ dx = (sinx)(1/2e^(2x)) - int \ (1/2e^(2x))(cosx) \ dx
:. int \ e^(2x) \ sinx \ dx = 1/2e^(2x)sinx - 1/2I
Inserting this result into [A] we get:
I = 1/2e^(2x)cosx + 1/2(1/2e^(2x)sinx - 1/2I) + A
:. I = 1/2e^(2x)cosx + 1/4e^(2x)sinx - 1/4I + A
:. 4I = 2e^(2x)cosx + e^(2x)sinx - I + 4A
:. 5I = 2e^(2x)cosx + e^(2x)sinx + 4A
:. I = 2/5e^(2x)cosx + 1/5e^(2x)sinx + C