Question #dd425

2 Answers
Jul 13, 2017

(sin^2xcosx)/(1+sinx)^2.

Explanation:

The Expression =(1/(secx+tanx))(sinx/(cscx+1)),

={1/(1/cosx+sinx/cosx)}{sinx/(1/sinx+1)},

=[1/{(1+sinx)/cosx}][sinx/{(1+sinx)/sinx}],

={cosx/(1+sinx)}{sin^2x/(1+sinx)},

=(sin^2xcosx)/(1+sinx)^2.

Jul 13, 2017

frac(sin^(2)(x) cos(x))((1 + sin(x))^(2))

Explanation:

We have: (frac(1)(sec(x) + tan(x)))(frac(sin(x))(csc(x) + 1))

Let's apply three standard trigonometric identities; sec(x) = frac(1)(cos(x)), csc(x) = frac(1)(sin(x)) and tan(x) = frac(sin(x))(cos(x)):

= (frac(1)(frac(1)(cos(x)) + frac(sin(x))(cos(x))))(frac(sin(x))(frac(1)(sin(x)) + 1))

= (frac(1)(frac(1 + sin(x))(cos(x))))(frac(sin(x))(frac(1 + sin(x))(sin(x))))

= (frac(cos(x))(1 + sin(x)))(frac(sin^(2)(x))(1 + sin(x)))

= frac(sin^(2)(x) cos(x))((1 + sin(x))^(2))