Show that I_n = -1/n \ cosx \ sin^(n-1)x+(n-1)/n \ I_(n-2) where I_n=int \ sin^nx \ dx , and n ge 2?
1 Answer
We want to show that:
I_n = -1/n \ cosx \ sin^(n-1)x+(n-1)/n \ I_(n-2)
Where
We can write the integral as:
I_n=int \ (sinx)(sin^(n-1)x) \ dx providedn ge 2
We can use integration by parts:
Let
{ (u,=sin^(n-1)x, => (du)/dx,=(n-1)sin^(n-2)xcosx), ((dv)/dx,=sinx, => v,=-cosx ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx
gives us:
int \ (sin^(n-1)x)(sinx) \ dx = (sin^(n-1)x)(-cosx) - int \ (-cosx)((n-1)sin^(n-2)xcosx) \ dx
:. I_n = -cosx \ sin^(n-1)x + (n-1)int \ cos^2x \ sin^(n-2)x \ dx
Using the identity,
I_n = -cosx \ sin^(n-1)x + (n-1)int \ (1-sin^2x) \ sin^(n-2)x \ dx
\ \ \ = -cosx \ sin^(n-1)x + (n-1)int \ sin^(n-2)x - sin^(n)x \ dx
\ \ \ = -cosx \ sin^(n-1)x + (n-1)(I_(n-2) - I_n)
\ \ \ = -cosx \ sin^(n-1)x + (n-1)I_(n-2) - (n-1)I_n
I_n + (n-1) I_n = -cossx \ sin^(n-1)x + (n-1)I_(n-2)
:. nI_n = -cosx \ sin^(n-1)x + (n-1)I_(n-2)
:. I_n = -1/ncossx \ sin^(n-1)x + (n-1)/nI_(n-2) QED