Find int ln^2x dx ?

1 Answer
Nov 28, 2017

int \ ln^2x \ dx = x^2lnx-2xlnx+2x + C

Explanation:

We seek:

I = int \ ln^2x \ dx

We can apply integration by Parts:

Let { (u,=ln^2x, => (du)/dx,=(2lnx)/x), ((dv)/dx,=1, => v,=x ) :}

Then plugging into the IBP formula:

int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx

We have:

int \ (ln^2x)(1) \ dx = (ln^2x)(x) - int \ (x)((2lnx)/x) \ dx
:. I = x^2lnx-2int \ lnx \ dx

Now consider the last integral:

I_1 = int \ x^2sin2x \ dx

We can again apply integration by parts a second time for the second integral:

Let { (u,=lnx, => (du)/dx,=1/x), ((dv)/dx,=1, => v,=x ) :}

Then plugging into the IBP formula:

int \ (lnx)(1) \ dx = (lnx)(x) - int \ (x)(1/x) \ dx
:. int \ lnx \ dx = xlnx - int \ dx
:. int \ lnx \ dx = xlnx - x

Using this result along with the earlier result we find:

I = x^2lnx-2(xlnx-x) + C
\ \ = x^2lnx-2xlnx+2x + C