Let, I=intt^2/(1+t^4)dt=1/2int(2t^2)/(1+t^4)dt,
=1/2int{(t^2+1)+(t^2-1)}/(1+t^4)dt,
=1/2int(t^2+1)/(1+t^4)dt+1/2int(t^2-1)/(1+t^4)dt,
=1/2I_1+1/2I_2...........(star), where,
I_1=int(t^2+1)/(1+t^4)dt,
=int{t^2(1+1/t^2)}/{t^2(t^2+1/t^2)}dt,
=int(1+1/t^2)/(t^2+1/t^2)dt.
Now, we substitute,
(t-1/t)=u," so that, "(1+1/t^2)dt=du.
Also, t^2+1/t^2=(t-1/t)^2+2.
:. I_1=int1/(u^2+2)du=1/sqrt2arc tan(u/sqrt2), i.e.,
I_1=1/sqrt2arc tan{1/sqrt2(t-1/t)},
rArr I_1=1/sqrt2arc tan((t^2-1)/(sqrt2t))........(star_1).
Similarly, I_2=int(1-1/t^2)/(t^2+1/t^2)dt, becomes, on using the
substitution (t+1/t)=v, I_2=int1/(v^2-2)dv,
=1/(2sqrt2)ln|(v-sqrt2)/(v+sqrt2)|,
rArr I_2=1/(2sqrt2)ln|(t^2-sqrt2t+1)/(t^2+sqrt2t+1)|.......(star_2).
Altogether, from (star),(star_1) and (star_2), we have,
I=1/(2sqrt2)arc tan{1/sqrt2(t-1/t)}
+1/(4sqrt2)ln|(t^2-sqrt2t+1)/(t^2+sqrt2t+1)|+C.
Enjoy Maths.!