What is the derivative of? : (x^2+2)e^(4x)

(Question Restore: portions of this question have been edited or deleted!)

1 Answer
Jan 15, 2018

(D) is an intermediate step.

dy/dx = 2(2x^2+x+4)e^(4x)

Explanation:

We will apply the Product Rule for Differentiation:

d/dx(uv)=u(dv)/dx+(du)/dxv , or, (uv)' = (du)v + u(dv)

So with y = (x^2+2)e^(4x) ;

{ ("Let", u = x^2+2, => (du)/dx = 2x), ("And" ,v = e^(4x), =>(dv)/dx = 4e^(4x) ) :}

Then:

d/dx(uv)=u(dv)/dx + (du)/dxv

Giving:

dy/dx = (x^2+2)(4e^(4x)) + (2x)(e^(4x))
\ \ \ \ \ \ = 2(2x^2+x+4)e^(4x)