Evaluate the integral? : int_0^2 xsqrt(2x-x^2) dx

2 Answers
Jan 20, 2018

int_0^2 \ xsqrt(2x-x^2) \ dx = pi/2

Explanation:

Consider the indefinite integral:

I = int \ xsqrt(2x-x^2) \ dx

Which we can write as:

I = int \ (x-1)sqrt(2x-x^2) + sqrt(2x-x^2) \ dx
\ \ = int \ (x-1)sqrt(2x-x^2) \ dx + int \ sqrt(2x-x^2) \ dx

For the first integral, we have:

I_1 = int \ (x-1)sqrt(2x-x^2) \ dx

we can use a substitution, Let:

u = 2x-x^2 => (du)/dx = 2-2x = -2(x-1)

And if we perform this substitution then we get:

I_1 = int \ (-1/2) sqrt(u) \ du
\ \ \ = -1/2 u^(3/2)/(3/2)
\ \ \ = -1/3 u^(3/2)

And restoring the substitution we get:

I_1 = -1/3 (2x-x^2)^(3/2)

Next we consider the second integral,

I_2 = int \ sqrt(2x-x^2) \ dx
\ \ \ = int \ sqrt(1-(x-1)^2) \ dx

And here we can perform a substitution; Let

sin theta=x-1 => (d theta)/(dx)cos theta=1

And if we perform this substitution then we get:

I_2 = int \ sqrt(1-sin^2 theta) \ (cos theta) \ d theta
\ \ \ = int \ cos^2 theta \ d theta
\ \ \ = int \ (cos(2theta)+1)/2 \ d theta
\ \ \ = (sin2theta + theta)/2

And restoring the substitution we find that theta = arcsin(x-1) and sin(2theta)=2(x-1)sqrt(1-(x-1)^2) and so:

I_2 = (arcsin(x-1) + (x-1)sqrt((x-1)-(x-1)^2))/2
\ \ \ = (arcsin(x-1) + (x-1)sqrt(2x-x^2))/2

Combining our two results we then gave:

I = (arcsin(x-1) + (x-1)sqrt(2x-x^2))/2 -1/3 (2x-x^2)^(3/2)

Given this result we then have:

int_0^2 \ xsqrt(2x-x^2) \ dx = [(arcsin(x-1) + (x-1)sqrt(2x-x^2))/2 -1/3 (2x-x^2)^(3/2)]_0^2

" " = 1/2((arcsin1 - arcsin(-1))

" " = 1/2(pi/2-(-pi/2))

" " = pi/2

Jan 20, 2018

int_0^2 xsqrt(2x-x^2)*dx=pi/2

Explanation:

int_0^2 xsqrt(2x-x^2)*dx

=int_0^2 xsqrt(1^2-(x-1)^2)*dx

After using x-1=sinu, x=1+sinu and dx=cosu*du transforms, this integral became

int_(-pi/2)^(pi/2) (1+sinu)*cosu*cosu*du

=int_(-pi/2)^(pi/2) (1+sinu)*(cosu)^2*du

=1/2int_(-pi/2)^(pi/2) (1+sinu)*(1+cos2u)*du

=1/2int_(-pi/2)^(pi/2) (1+cos2u+sinu+cos2u*sinu)*du

=1/2int_(-pi/2)^(pi/2) [1+cos2u+sinu+1/2*(sin3u-sinu)]*du

=1/4int_(-pi/2)^(pi/2) (2+2cos2u+sin3u+sinu)*du

=1/4*[2u+sin2u-1/3*cos3u-cosu]_(-pi/2)^(pi/2)

=1/4*2pi

=pi/2