Evaluate the integral? : int_0^2 xsqrt(2x-x^2) dx
2 Answers
int_0^2 \ xsqrt(2x-x^2) \ dx = pi/2
Explanation:
Consider the indefinite integral:
I = int \ xsqrt(2x-x^2) \ dx
Which we can write as:
I = int \ (x-1)sqrt(2x-x^2) + sqrt(2x-x^2) \ dx
\ \ = int \ (x-1)sqrt(2x-x^2) \ dx + int \ sqrt(2x-x^2) \ dx
For the first integral, we have:
I_1 = int \ (x-1)sqrt(2x-x^2) \ dx
we can use a substitution, Let:
u = 2x-x^2 => (du)/dx = 2-2x = -2(x-1)
And if we perform this substitution then we get:
I_1 = int \ (-1/2) sqrt(u) \ du
\ \ \ = -1/2 u^(3/2)/(3/2)
\ \ \ = -1/3 u^(3/2)
And restoring the substitution we get:
I_1 = -1/3 (2x-x^2)^(3/2)
Next we consider the second integral,
I_2 = int \ sqrt(2x-x^2) \ dx
\ \ \ = int \ sqrt(1-(x-1)^2) \ dx
And here we can perform a substitution; Let
sin theta=x-1 => (d theta)/(dx)cos theta=1
And if we perform this substitution then we get:
I_2 = int \ sqrt(1-sin^2 theta) \ (cos theta) \ d theta
\ \ \ = int \ cos^2 theta \ d theta
\ \ \ = int \ (cos(2theta)+1)/2 \ d theta
\ \ \ = (sin2theta + theta)/2
And restoring the substitution we find that
I_2 = (arcsin(x-1) + (x-1)sqrt((x-1)-(x-1)^2))/2
\ \ \ = (arcsin(x-1) + (x-1)sqrt(2x-x^2))/2
Combining our two results we then gave:
I = (arcsin(x-1) + (x-1)sqrt(2x-x^2))/2 -1/3 (2x-x^2)^(3/2)
Given this result we then have:
int_0^2 \ xsqrt(2x-x^2) \ dx = [(arcsin(x-1) + (x-1)sqrt(2x-x^2))/2 -1/3 (2x-x^2)^(3/2)]_0^2
" " = 1/2((arcsin1 - arcsin(-1))
" " = 1/2(pi/2-(-pi/2))
" " = pi/2
Explanation:
=
After using
=
=
=
=
=
=
=
=