A line segment is bisected by line with the equation 3 y + 7 x = 4 . If one end of the line segment is at (2 ,4 ), where is the other end?

1 Answer
Jun 22, 2016

P_3(x,y)=(-3 8/11,1 6/11)

Explanation:

Tony B

Given:" "3y+7x=4

Write as color(blue)(y=-7/3x+4/3" "larr" first line")....(1)
Thus the gradient of the line normal to this (perpendicular) is:

(-1)xx1/m" "->" "(-1)xx(-3/7)=+3/7 giving:

" "color(blue)(y=3/7x+c" "larr" second line")......(2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("Determine the value of "c)

The second line passes through the point P_1->(x,y)->(2,4)
so by substitution:

color(red)(y=3/7x+c)color(green)(" "->" "4=3/7(2)+c)

c" "=" "4-6/7" "=" " 3 1/7 -> 22/7 giving:

" "cancel(color(blue)(y=3/7x+19/7" "larr" second line")...(3))

" "color(blue)(y=3/7x+color(red)(22/7)" "larr" second line corrected")...(3)" "

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("Determine point of intersection " P_2) (mid point)

Relating equation (3) to equation (1) through y

" "3/7x+22/7" "=" "y" "=" "-7/3x+4/3

" "=>3/7x+7/3x" "=" "4/3-22/7

" "(9+49)/21x" "=" "(28-66)/7

" "58x" "=" "-38

" "x=-38/58" "->" "-19/29

" "P_2->(x,y)=(-19/29 , y )

substitute into equation (3) to find P_2(y)

" "y=3/7x+22/7" "->" " y=3/7(-19/29)+ 22/7

" "y=2 25/29 -> 81/29

color(blue)(" "P_2->(x,y)=(-19/29 , 81/29 ))
,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("Determine point "P_3)

P_1(x)" to "P_2(x)" " =" " P_2(x)-P_1(x)

" "=" "2-(-19/22) = 2 19/22
,................................................................................................

" "P_3(x)" "=" "P_1(x)-2(2 19/22)

" "P_3(x)" "=" "2-2(2 19/22)" "=" "-3 8/11
'.............................................................................................
Substitute for x in equation (3) to find P_3(y)

P_3(y)=3/7x+22/7" "->" "3/7(-3 8/11)+22/7

P_3(y)=1 6/11
'.........................................................................................

P_3(x,y)=(-3 8/11,1 6/11)