A projectile is shot from the ground at an angle of #pi/6 # and a speed of #15 m/s#. Factoring in both horizontal and vertical movement, what will the projectile's distance from the starting point be when it reaches its maximum height?

1 Answer
Mar 8, 2016

#t=(15*0,5)/(9,81)=0,76" "s#
#x~=9,87 m#
#y=h_m~=2,87 m#
#v_y=0" at the point of D"#
#v_x=12,99 m/s#

Explanation:

enter image source here
#alpha:pi/6=30^o" "v_i=15 m/s#
#t=v_i*sin alpha/g" 'elapsed time to the maximum height'"#
#t=(15*0,5)/(9,81)=0,76" "s#
#y=h_m=v_i*t*sin alpha-1/2*g*t^2#
#y=h_m=15*0,76*0,5-1/2*9,81*(0,76)^2#
#y=h_m=5,7-2,83#
#y=h_m~=2,87 m#
#x=v_i*t*cos alpha#
#x=15*0,76*0,866#
#x~=9,87 m#
#v_y=0" at the point of D"#
#v_x=v_i*cos alpha#
#v_x=15*0,866#
#v_x=12,99 m/s" The x component of velocity is not change"#