A pyramid has a parallelogram shaped base and a peak directly above its center. Its base's sides have lengths of #2 # and #7 # and the pyramid's height is #7 #. If one of the base's corners has an angle of #(5pi)/6#, what is the pyramid's surface area?

1 Answer
Jun 10, 2016

#7+(7sqrt(197))/2+(7sqrt(17))/2~=70.555#

Explanation:

Views of the solid
I created this figure using MS Excel

I created this figure using MS Excel

I created this figure using MS Excel

I created this figure using MS Excel

I created this figure using MS Excel

Data:
#AB=CD=7#
#AD=BC=2#
#EM=7#
#B hat A D=150^@#

#S_("parallelogram")=b*h_1=7*2*cos60^@=7*1=7#

It can be proven that #AM=CM# and #BM=DM# (by using angle-side-angle). This is why:
#triangle_(AEM) -= triangle_(CEM) => AE=CE#
and #triangle_(BEM) -= triangle_(DEM)=> BE=DE#
what means that:
#triangle_(ABE) -= triangle_(CDE)#
and #triangle_(ADE) -= triangle_(BCE)#

So what we need to solve the problem is to find:
height of #triangle_(ABE)#, #h_2# in the 4th figure above
height of #triangle_(ADE)#, #h_3# in the 5th figure above

  • Finding the diagonals of the parallelogram (using Law of Cosines)
    #BD^2=AB^2+AD^2-2*AB*AD*cos150^@#
    #BD^2=4+49-2*2*7*(-sqrt(3)/2)#
    #BD^2=53+14sqrt3 => BD=sqrt(53+14sqrt3)#

#AC^2=AB^2+BC^2-2*AB*BC*cos30^@#
#AC^2=4+49-2*2*7*(sqrt3/2)#
#AC^2=53-14sqrt3 => AC=sqrt(53-14sqrt3)#

Finding the slant edge AE using #triangle_(AEM)# in which #AM=(AC)/2#
#AE^2=EM^2+((AC)/2)^2#
#AE^2=7^2+(53-14sqrt3)/4=(196+53-14sqrt3)/4=(249-14sqrt3)/4#

Finding the slant edge BD using #triangle_(BEM)# in which #BM=(BD)/2#
#BE^2=EM^2+((BD)/2)^2#
#BE^2=7^2+(53+14sqrt3)/4=(196+53+14sqrt3)/4=(249+14sqrt3)/4#

  • Finding the height #h_2# using #triangle_(ABE)#, 4th figure
    #AE^2=h_2^2+m^2 => h_2^2=AE^2-m^2#
    #BE^2=h_2^2+(7-m)^2#
    #BE^2=AE^2-cancel(m^2)+49-14m+cancel(m^2)#
    #14m=AE^2-BE^2+49 => m=(7-sqrt3)/2#
    #-> m^2=(49-14sqrt3+3)/4=(52-14sqrt3)/4#

#h_2^2=AE^2-m^2=(249-cancel(14sqrt3))/4-(52-cancel(14sqrt3))/4#
#h_2^2=197/4 => h_2=sqrt197/2#
We can also find #h_2# in this way:
#h_2^2=(h_1/2)^2+EM^2=(1/2)^2+7^2=1/4+49=197/4# => #h_2=sqrt197/2#

  • Finding the height #h_3# using #triangle_(ADE)#, 5th figure
    #AE^2=h_3^2+n^2 => h_3^2=AE^2-n^2#
    #DE^2=h_3^2+(2+n)^2#
    #DE^2=AE^2-cancel(n^2)+4+4n+cancel(n^2)#
    #4n=DE^2-AE^2-4=(249+14sqrt3)/4-(249-14sqrt3)/4-4#
    #n=7*sqrt3/4-1#
    #-> n^2=147/16-7*sqrt3/2+1 => n^2=163/16-7*sqrt3/2#

#h_3^2=AE^2-n^2=(249-14sqrt3)/4-163/16+7*sqrt3/2#
#h_3^2=833/16 => h_3=(7sqrt17)/4#
We can also find #h_3# in this way:
#h_3^2=( (7cos60^@)/2)^2+EM^2=(7/4)^2+7^2=49/16+49=833/16 => h_3=(7sqrt17)/4#

Finally:

#S_T=S_"paralellogram" +2*S_(triangle_(ABE))+2*S_(triangle_(ADE))#
#S_T=7+cancel(2)*(7*sqrt197/2)/cancel(2)+cancel(2)*(cancel(2)*7*sqrt17/cancel(4))/2#
#S_T=7+(7sqrt197)/2+(7sqrt17)/2#