The lengths of sides of triangle having vertices A(7, 9)A(7,9), B(8,8)B(8,8) & C(6, 6)C(6,6) are given as
AB=\sqrt{(7-8)^2+(9-8)^2}=\sqrt2AB=√(7−8)2+(9−8)2=√2
BC=\sqrt{(8-6)^2+(8-6)^2}=2\sqrt2BC=√(8−6)2+(8−6)2=2√2
AC=\sqrt{(7-6)^2+(9-6)^2}=\sqrt{10}AC=√(7−6)2+(9−6)2=√10
Now, using Cosine rule in \Delta ABC as follows
\cos A=\frac{AB^2+AC^2-BC^2}{2(AB)(AC)}
\cos A=\frac{(\sqrt2)^2+(\sqrt10)^2-(2\sqrt2)^2}{2(\sqrt2)(\sqrt10)}
\cos A=1/\sqrt5
A=\cos^{-1}(1/\sqrt5)=63.435^\circ
Similarly, we get
\cos B=\frac{AB^2+BC^2-AC^2}{2(AB)(BC)}
\cos B=\frac{(\sqrt2)^2+(2\sqrt2)^2-(\sqrt10)^2}{2(\sqrt2)(2\sqrt2)}
\cos B=0
B=90^\circ
\cos C=\frac{AC^2+BC^2-AB^2}{2(AC)(BC)}
\cos C=\frac{(\sqrt10)^2+(2\sqrt2)^2-(\sqrt2)^2}{2(\sqrt10)(2\sqrt2)}
\cos C=2/\sqrt5
C=\cos^{-1}(2/\sqrt5)=26.565^\circ