Apart from #2, 3# and #3, 5# is there any pair of consecutive Fibonacci numbers which are both prime?
1 Answer
No
Explanation:
The Fibonacci sequence is defined by:
#F_0 = 0#
#F_1 = 1#
#F_n = F_(n-2) + F_(n-1)" "# for#n > 1#
Starting with
#0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,...#
Prove by induction that:
#F_(m+n) = F_(m-1)F_n+F_mF_(n+1)#
for any
Base cases
#F_(m+color(blue)(1)) = F_(m-1) + F_m = F_(m-1)F_(color(blue)(1)) + F_m F_(color(blue)(1)+1)#
#F_(m+color(blue)(2)) = F_(m+1) + F_m = F_(m-1) + 2F_m = F_(m-1)F_color(blue)(2) + F_mF_(color(blue)(2)+1)#
Induction step
#F_(m+k+1) = F_(m+k-1) + F_(m+k)#
#color(white)(F_(m+k+1)) = F_(m-1)F_(k-1) + F_mF_k + F_(m-1)F_k + F_mF_(k+1)#
#color(white)(F_(m+k+1)) = F_(m-1)(F_(k-1) + F_k) + F_m(F_k +F_(k+1))#
#color(white)(F_(m+k+1)) = F_(m-1)F_(k+1) + F_m F_(k+2)#
Hence:
#F_(2n) = F_(n+n) = F_(n-1)F_n + F_nF_(n+1) = F_n(F_(n-1) + F_(n+1))#
So:
If
So for any two consecutive Fibonacci numbers after
e.g.