What is the derivative of e^x sin(3^(1/2x))?

1 Answer
May 2, 2018

d/dx \ e^x sin(3^(1/2x)) = ( (ln3 \ 3^(x/2) \ cos(3^(x/2)))/2 + sin(3^(x/2)))e^x \

Explanation:

We seek:

d/dx \ e^x sin(3^(1/2x))

Using the product rule we have:

d/dx \ e^x sin(3^(1/2x)) = e^x (d/dx sin(3^(1/2x))) + (d/dx e^x)sin(3^(1/2x))

By utilizing the property a^x -= e^(xlna), and applying the chain rule, we have:

d/dx sin(3^(1/2x)) = cos(3^(1/2x)) \ d/dx (3^(1/2x))
" "= cos(3^(1/2x)) \ d/dx (e^(1/2xln3))
" "= cos(3^(1/2x)) \ e^(1/2xln3) \ d/dx (1/2xln3)
" "= cos(3^(1/2x)) \ 3^(1/2x) \ (1/2ln3)

Thus:

d/dx \ e^x sin(3^(1/2x)) = e^x \ cos(3^(1/2x)) \ 3^(1/2x) \ (1/2ln3) + e^x \ sin(3^(1/2x))

" " = ( (ln3 \ 3^(x/2) \ cos(3^(x/2)))/2 + sin(3^(x/2)))e^x \