Does the set p_1=1,p_2=1−3x,p_3=x,p_4=x^2 form a basis for P2?

1 Answer
Apr 4, 2017

See below.

Explanation:

Any P_2(x)=a x^2+bx+c can be represented as

alpha p_1+beta p_2+gammap_3+delta p_4

or

a x^2+bx+c=alpha+beta -(3beta-gamma)x+delta x^2

with

{(alpha+beta=a),(-3beta+gamma=b),(delta=c):}

or

((0,0,0,1),(0,-3,1,0),(1,1,0,0))((alpha),(beta),(gamma),(delta))=((a),(b),(c))

or

((0,0,1),(0,-3,0),(1,1,0))((alpha),(beta),(delta))=((a),(b),(c))-gamma((0),(1),(0))

Here gamma is a free parameter and can be set to 0. Also

((0,0,1),(0,-3,0),(1,1,0)) is invertible so a minimal basis is formed by

p_1,p_2,p_4 or p_1,p_3,p_4