Any P_2(x)=a x^2+bx+c can be represented as
alpha p_1+beta p_2+gammap_3+delta p_4
or
a x^2+bx+c=alpha+beta -(3beta-gamma)x+delta x^2
with
{(alpha+beta=a),(-3beta+gamma=b),(delta=c):}
or
((0,0,0,1),(0,-3,1,0),(1,1,0,0))((alpha),(beta),(gamma),(delta))=((a),(b),(c))
or
((0,0,1),(0,-3,0),(1,1,0))((alpha),(beta),(delta))=((a),(b),(c))-gamma((0),(1),(0))
Here gamma is a free parameter and can be set to 0. Also
((0,0,1),(0,-3,0),(1,1,0)) is invertible so a minimal basis is formed by
p_1,p_2,p_4 or p_1,p_3,p_4