Evaluate the integral using subsitution rule int cos^3xsinx dxcos3xsinxdx?

1 Answer
Jan 19, 2017

intcos^(3)(x)sin(x)dx=(-cos^(4)(x))/4+Ccos3(x)sin(x)dx=cos4(x)4+C

Explanation:

Let

u=cos(x)u=cos(x)

then

du=-sin(x)du=sin(x)

Then we can write

intcos^(3)(x)sin(x)dx=-intu^3du=-u^(4)/4+Ccos3(x)sin(x)dx=u3du=u44+C

Then by substituting cos(x)cos(x) back in we get

ul(intcos^(3)(x)sin(x)dx=(-cos^(4)(x))/4+C)