(Exponential Equation) How do I find X?
5^x=4^(x+1)5x=4x+1
2 Answers
Explanation:
Take the natural logarithm of both sides.
ln(5^x) = ln(4^(x +1))ln(5x)=ln(4x+1)
Now use
xln5 = (x + 1)ln4xln5=(x+1)ln4
xln5 = xln4 + ln4xln5=xln4+ln4
xln5 - xln4 = ln4xln5−xln4=ln4
x(ln5 - ln4) = ln4x(ln5−ln4)=ln4
This can be simplified further using
x(ln(5/4)) = ln4x(ln(54))=ln4
x = (ln4)/(ln(5/4))x=ln4ln(54)
If you prefer an approximation, we can take
Hopefully this helps!
I got:
Explanation:
Here we can try applying the natural log,
then:
rearrange:
if you have a pocket calculator we can easily evaluate the natural log to get: