(Exponential Equation) How do I find X?

5^x=4^(x+1)5x=4x+1

2 Answers
Apr 13, 2017

x~~ 6.21x6.21.

Explanation:

Take the natural logarithm of both sides.

ln(5^x) = ln(4^(x +1))ln(5x)=ln(4x+1)

Now use lna^n = nlnalnan=nlna.

xln5 = (x + 1)ln4xln5=(x+1)ln4

xln5 = xln4 + ln4xln5=xln4+ln4

xln5 - xln4 = ln4xln5xln4=ln4

x(ln5 - ln4) = ln4x(ln5ln4)=ln4

This can be simplified further using lna -lnb = ln(a/b)lnalnb=ln(ab).

x(ln(5/4)) = ln4x(ln(54))=ln4

x = (ln4)/(ln(5/4))x=ln4ln(54)

If you prefer an approximation, we can take x~~ 6.21x6.21.

Hopefully this helps!

Apr 13, 2017

I got: x=(ln(4))/(ln(5)-ln(4))x=ln(4)ln(5)ln(4)

Explanation:

Here we can try applying the natural log, lnln, on both sides and apply some properties of logs:
ln(5)^x=ln(4)^(x+1)ln(5)x=ln(4)x+1
then:
xln(5)=(x+1)ln(4)xln(5)=(x+1)ln(4)
rearrange:
xln(5)=xln(4)+ln(4)xln(5)=xln(4)+ln(4)
xln(5)-xln(4)=ln(4)xln(5)xln(4)=ln(4)
x[ln(5)-ln(4)]=ln(4)x[ln(5)ln(4)]=ln(4)
x=(ln(4))/(ln(5)-ln(4))x=ln(4)ln(5)ln(4)
if you have a pocket calculator we can easily evaluate the natural log to get:
x=6.21256x=6.21256