Find the number of four tuples (a,b,c,d) of positive integers satisfying all three equations a^3=b^2a3=b2, c^3=d^2c3=d2, c-a=64ca=64 ?

2 Answers
Jul 12, 2016

{a=15^2,b=15^3,c=17^2,d=17^3}{a=152,b=153,c=172,d=173} and
{a=6^2,b=6^3,c=10^2,d=10^3}{a=62,b=63,c=102,d=103}

Explanation:

Solving

{(a^3=b^2), (c^3=d^2), (c-a=64) :}

for b,c,d we obtain the feasible (integer positive) solution

b = a^(3/2), c = 64 + a, d = (64 + a)^(3/2)

Regarding the solution for b then a = m^2 and
regarding the solution for d then 64+a = n^2

so

n^2-m^2=64 = 2^6

or

(n+m)(n-m) = p cdot q = 2^6

and

n+m = p = {2^6,2^5,2^4}

For system

{ (n+m=p), (n-m=q) :}

the feasible solutions are

{n = 17, m = 15} and {n = 10,m = 6}

then a={15^2, 6^2}
d ={(sqrt (64+15^2))^3=17^3,(sqrt(64+6^2))^3=10^3}
c = {64+15^2=17^2,64+6^2=10^2}
b = {15^3, 6^3}

Jul 13, 2016

There are two, namely:

color(blue)(""(15^2, 15^3, 17^2, 17^3)) = color(blue)(""(225, 3375, 289, 4913))

color(blue)(""(6^2, 6^3, 10^2, 10^3)) = color(blue)(""(36, 216, 100, 1000))

Explanation:

Let:

p = b/a

Then:

p^2 = b^2/a^2 = a^3/a^2=a

p^3 = b^3/a^3 = b^3/b^2 = b

Then since p is a positive rational number whose square is a positive integer, p must be a positive integer.

Similarly, if we let q = d/c, then q is a positive integer with:

q^2 = c

q^3 = d

Then:

2^6 = 64 = c - a = q^2-p^2 = (q-p)(q+p)

Both (q-p) and (q+p) are positive integers and (q-p) < (q+p).

So the only possible factorings of 2^6 give us:

{ ((q-p) = 1), ((q+p) = 64) :}color(white)(XX) hence 2q=65,color(white)(X) color(red)(cancel(color(black)(q=65/2)))

{ ((q-p) = 2), ((q+p) = 32) :}color(white)(XX) hence 2q=34,color(white)(X) color(blue)(q = 17),color(white)(X) color(blue)(p = 15)

{ ((q-p) = 4), ((q+p) = 16) :}color(white)(XX) hence 2q=20,color(white)(X) color(blue)(q = 10), color(white)(X) color(blue)(p = 6)

So there are two possible tuples (a,b,c,d) satisfying the conditions, namely:

color(blue)(""(15^2, 15^3, 17^2, 17^3)) = color(blue)(""(225, 3375, 289, 4913))

color(blue)(""(6^2, 6^3, 10^2, 10^3)) = color(blue)(""(36, 216, 100, 1000))