Find the real solution(s) of sqrt(3-x)-sqrt(x+1) > 1/3 ?

1 Answer
Sep 4, 2016

x in [-1, 1 - sqrt(71)/18)

Explanation:

First find values of x where:

sqrt(3-x)-sqrt(x+1) = 1/3

Squaring both sides (which may introduce spurious solutions), we get:

(3-x)-2sqrt((3-x)(x+1))+(x+1) = 1/9

which simplifies to:

4-2 sqrt(3+2x-x^2) = 1/9

Multiply both sides by 9 to get:

36-18 sqrt(3+2x-x^2) = 1

Hence:

35 = 18 sqrt(3+2x-x^2)

Square both sides to get:

1225 = 324(3+2x-x^2) = 972+648x-324x^2

Rearrange to get:

324x^2-648x+253 = 0

Divide through by 324 to get:

0 = x^2-2x+253/324 = (x-1)^2-71/324

Hence x = 1+-sqrt(71)/18

Note that if x = 1+sqrt(71)/18 then 3-x < 2, x+1 > 2 and:

sqrt(3-x)-sqrt(x+1) < 0

If x = 1-sqrt(71)/18 then:

sqrt(3-x)-sqrt(x+1) = sqrt(2+sqrt(71)/18)-sqrt(2-sqrt(71)/18) > 0

and we find:

(sqrt(3-x)-sqrt(x+1))^2 = (sqrt(2+sqrt(71)/18)-sqrt(2-sqrt(71)/18))^2

color(white)((sqrt(3-x)-sqrt(x+1))^2) = (2+sqrt(71)/18)-2sqrt((2+sqrt(71)/18)(2-sqrt(71)/18))+(2-sqrt(71)/18)

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 4-2sqrt(4-71/324)

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 4-2sqrt(1225/324)

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 4-2*35/18

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 36/9-35/9

color(white)((sqrt(3-x)-sqrt(x+1))^2) = 1/9

So this is a valid solution.

Now if -1 <= x < 1-sqrt(71)/18 then both square roots are defined and sqrt(3-x)-sqrt(x+1) > 1/3