Find the real solution(s) of sqrt(3-x)-sqrt(x+1) > 1/3 ?
1 Answer
Explanation:
First find values of
sqrt(3-x)-sqrt(x+1) = 1/3
Squaring both sides (which may introduce spurious solutions), we get:
(3-x)-2sqrt((3-x)(x+1))+(x+1) = 1/9
which simplifies to:
4-2 sqrt(3+2x-x^2) = 1/9
Multiply both sides by
36-18 sqrt(3+2x-x^2) = 1
Hence:
35 = 18 sqrt(3+2x-x^2)
Square both sides to get:
1225 = 324(3+2x-x^2) = 972+648x-324x^2
Rearrange to get:
324x^2-648x+253 = 0
Divide through by
0 = x^2-2x+253/324 = (x-1)^2-71/324
Hence
Note that if
sqrt(3-x)-sqrt(x+1) < 0
If
sqrt(3-x)-sqrt(x+1) = sqrt(2+sqrt(71)/18)-sqrt(2-sqrt(71)/18) > 0
and we find:
(sqrt(3-x)-sqrt(x+1))^2 = (sqrt(2+sqrt(71)/18)-sqrt(2-sqrt(71)/18))^2
color(white)((sqrt(3-x)-sqrt(x+1))^2) = (2+sqrt(71)/18)-2sqrt((2+sqrt(71)/18)(2-sqrt(71)/18))+(2-sqrt(71)/18)
color(white)((sqrt(3-x)-sqrt(x+1))^2) = 4-2sqrt(4-71/324)
color(white)((sqrt(3-x)-sqrt(x+1))^2) = 4-2sqrt(1225/324)
color(white)((sqrt(3-x)-sqrt(x+1))^2) = 4-2*35/18
color(white)((sqrt(3-x)-sqrt(x+1))^2) = 36/9-35/9
color(white)((sqrt(3-x)-sqrt(x+1))^2) = 1/9
So this is a valid solution.
Now if