For what values of x is #f(x)=4x^5-5x^4# concave or convex?

1 Answer
Jan 29, 2017

The answer is #f(x)# is concave down for #x in ]-oo, 1]# and concave up when # x in [1, +oo[#

Explanation:

We calculate the first derivative and we build a sign chart

#f(x)=4x^5-5x^4#

#f'(x)=20x^4-20x^3#

#f'(x)=20x^3(x-1)#

The critical points are when #f'(x)=0#

#20x^3(x-1)=0#

#x=0# and #x=1#

Now we construct the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaaa)##0##color(white)(aaaaaa)##1##color(white)(aaaaa)##+oo#

#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-##color(white)(aa)####color(white)(aaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x-1##color(white)(aaaaa)##-##color(white)(aaaaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##f'(x)##color(white)(aaaaa)##+##color(white)(aaaaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##↗^(0)##color(white)(aaaa)##↘_(-1)##color(white)(aaaa)##↗^(+oo)#

Therefore,

#f(x)# is concave down for #x in ]-oo, 1]# and concave up when

# x in [1, +oo[#