For what values of x is #f(x)=(x-3)(x+2)(x-1)# concave or convex?

1 Answer
May 27, 2018

Refer Explanation.

Explanation:

Given that: #f(x) =(x-3)(x+2)(x-1)#
#:.# #f(x) =(x^2-x-6)(x-1)#
#:.# #f(x) =(x^3-x^2-6x-x^2+x+6)#
#:.# #f(x) =(x^3-2x^2-5x+6)#

By using second derivative test,

  1. For the function to be concave downward:#f''(x)<0#
    #f(x) =(x^3-2x^2-5x+6)#
    #f'(x) =3x^2-4x-5#
    #f''(x) =6x-4#
    For the function to be concave downward:
    #f''(x)<0#
    #:.##6x-4<0#
    #:.##3x-2<0#
    #:.## color(blue)(x<2/3) #

  2. For the function to be concave upward:#f''(x)>0#
    #f(x) =(x^3-2x^2-5x+6)#
    #f'(x) =3x^2-4x-5#
    #f''(x) =6x-4#
    For the function to be concave upward:
    #f''(x)>0#
    #:.##6x-4>0#
    #:.##3x-2>0#
    #:.## color(blue)(x>2/3) #