Given A=((0,1),(0,1)). Let say T linear operator on R^(2x2) with T(X)=AX-XA, AAX in R^(2x2). How to determine rank(T) ?

1 Answer
Apr 11, 2017

See below.

Explanation:

There is an universal way to determine it.

Calling T(x)=Theta=(t_(11),t_(12),t_(21),t_(22))

and

Xi=(x_(11),x_(12),x_(21),x_(22)) we have

T(X)=AX-XA iff ((t_(11)=x_(21)),(t_(12)=-x_(11)-x_(12)+x_(22)),(t_(21)=x_(21)),(t_(22)=-x_(21)))

or

Theta=M Xi with M =((0, 0, 1, 0),(-1, -1, 0, 1),(0, 0, 1, 0),(0, 0, -1, 0))

but

"rank"(M) = 2

so

"rank"(T(X))=2