Given A=((-1, 2), (3, 4)) and B=((-4, 3), (5, -2)), how do you find B^-1?

1 Answer
Apr 9, 2016

B^(-1)=((-2/23,3/23),(5/23,4/23))

Explanation:

If B^(-1) is the Inverse of B
then
color(white)("XXX")BxxB^(-1)=I where I is the identity matrix

Suppose B^(-1) = ((a,b),(c,d))

Then
color(white)("XXX")BxxB^(-1)
color(white)("XXX")=((-4,3),(5,2))xx((a,b),(c,d))=((1,0),(0,1))

rArr
color(white)("XXX")-4a+3c=1color(white)("XXX")[1]
color(white)("XXX")-4b+3d=0color(white)("XXX")[2]
color(white)("XXXX")5a+2c=0color(white)("XXX")[3]
color(white)("XXXX")5b+2d=1color(white)("XXX")[4]

[1]xx5 - [3]xx4 gives
color(white)("XXX")23c=5 rarr c=5/23
and substituting this back into [1] gives
color(white)("XXX")a=-2/23

Similarly we can use [2] and [4] to get
color(white)("XXX")d=4/23
color(white)("XXX")b=2/23

Therefore
color(white)("XXX")B^(-1)=((-2/23,3/23),(5/23,4/23))