Given a_17=-82, d=-3a17=82,d=3, how do you find a_24a24?

1 Answer
Mar 2, 2017

a_24 = -93a24=93

Explanation:

Find the first element of the sequence using the formula for arithmetic sequences: a_n = a_1 + (n-1)dan=a1+(n1)d

a_17 = -82 = a_1 + (17-1)(-3)a17=82=a1+(171)(3)
-82 = a_1 + 16(-3)82=a1+16(3)
-82 = a_1 -4882=a148
-82+48 = a_1 -48+4882+48=a148+48
a_1 = -82 + 48a1=82+48
a_1 = -24a1=24

Now use the arithmetic sequence formula to find a_24a24:

a_24 = -24 + (24-1)(-3)a24=24+(241)(3)
a_24 = -24 + (23)(-3)a24=24+(23)(3)
a_24 = -24 -69a24=2469
a_24 = -93a24=93