Given a^2+b^2+c^2=16;x^2+y^2+z^2=25 and ax+by+cz=20 for a,b,c being real. How will you prove a/x=b/y=c/z ? Find also the value of each ratio.

1 Answer
May 31, 2016

See demonstration below, please.

Explanation:

Let vec v_1=(a,b,c) and vec v_2 = (x,y,z)
we know that

vec v_1.vec v_2 = norm(vec v_1) norm(vec v_2) cos(hat(vec v_1,vec v_2))

and

cos(hat(vec v_1,vec v_2)) = (a x+b y +c z)/(sqrt(a^2+b^2+c^2)sqrt(x^2+y^2+z^2)) = 20/(4 times 5)=1

So vec v_1 and vec v_2 are aligned or vec v_1 = lambda vec v_2

and lambda = 4/5