Given #f:[0,1]->RR# an integrable function such that #int_0^1f(x)dx=int_0^1 xf(x)dx= 1# prove that #int_0^1f(x)^2dx ge 4#?

1 Answer
Oct 28, 2016

#(f(x)-6x+2)^2= f(x)^2+36x^2+4-12xf(x)+4f(x)-24x#
so
#int_0^1f(x)^2dx=int_0^1(f(x)-6x+2)^2dx-36int_0^1x^2dx-4int_0^1dx#
#+12int_0^1xf(x)dx-4int_0^1f(x)dx+24int_0^1xdx>=#
#>=0-36/3-4+12-4+24/2=4#

Explanation:

Just think that #f^2=(f-ax-b)^2+F_(a,b)(x)# where
#F_(a,b)(x)=2axf(x)+2bf(x)-a^2x^2-b^2-2abx#
Then find a and b that maximize #int_0^1F_(a,b)(x)dx#
#int_0^1F_(a,b)(x)dx=2a+2b-a^2/3-b^2-ab#

Calculate gradient and put it = 0. You obtain #a=6, b=-2#