Given sin60=32 and cos60=12, how do you find sin30?

1 Answer
Mar 15, 2017

sin30o=12

Explanation:

by using identity proving,

sin60o=sin(30o+30o)=2sin30ocos30o

2sin30ocos30o=32

sin30ocos30o=34 --->a

cos60o=cos(30o+30o)=cos230osin230o

cos230osin230o=12

2cos230o1=12, where sin230o=1cos230o

cos230o=34

cos30o=32 --->b

replace b in a
sin30o(32)=34

sin30o=3423=12

we also can use as

sin30o=cos(90o30o)=cos60o=12