Given sin60^circ=sqrt3/2 and cos60^circ=1/2, how do you find sin30^circ?

1 Answer
Mar 15, 2017

sin 30^o = 1/2

Explanation:

by using identity proving,

sin 60^o = sin (30^o + 30^o) = 2 sin 30^o cos 30^o

2 sin 30^o cos 30^o = sqrt 3/2

sin 30^o cos 30^o = sqrt 3/4 --->a

cos 60^o = cos (30^o + 30^o) = cos^2 30^o - sin^2 30^o

cos^2 30^o - sin^2 30^o = 1/2

2 cos^2 30^o - 1 = 1/2, where sin^2 30^o = 1 - cos^2 30^o

cos^2 30^o = 3/4

cos 30^o = sqrt 3/2 --->b

replace b in a
sin 30^o (sqrt 3/2) = sqrt 3/4

sin 30^o = sqrt 3/4 * 2/ sqrt 3 = 1/2

we also can use as

sin 30^o = cos (90^o -30^o) = cos 60^o = 1/2