Given W=3^(x+y)W=3x+y, how do you solve for x?

2 Answers
Nov 8, 2016

lnW = ln(3^(x + y))lnW=ln(3x+y)

lnW = (x + y)ln3lnW=(x+y)ln3

lnW = xln3 + yln3lnW=xln3+yln3

lnW - yln3 = xln3lnWyln3=xln3

(lnW - yln3)/ln3 = xlnWyln3ln3=x

(ln(W/3))/ln3 = xln(W3)ln3=x

Hopefully this helps!

Nov 8, 2016

x=log_3 W-y=log W/log 3 - yx=log3Wy=logWlog3y.

Explanation:

Inversely,

x+y=log_3Wx+y=log3W

x=log_3 W-yx=log3Wy.