Given x+y=2x+y=2 and x^3+y^3=5x3+y3=5, what is x^2+y^2x2+y2?

2 Answers

It is x^2+y^2=3x2+y2=3

Explanation:

From x+y=2x+y=2 we have that

x+y=2=>(x+y)^2=2^2=>x^2+y^2+2xy=4x+y=2(x+y)2=22x2+y2+2xy=4

From x^3+y^3=5x3+y3=5 we have that

x^3+y^3=5=>(x+y)*(x^2+y^2-xy)=5=> x^2+y^2-xy=5/2x3+y3=5(x+y)(x2+y2xy)=5x2+y2xy=52

So we know that

x^2+y^2+2xy=4x2+y2+2xy=4 (1)

and

x^2+y^2-xy=5/2=>2*(x^2+y^2)-2xy=5x2+y2xy=522(x2+y2)2xy=5 (2)

If you add (1) and (2) you get

3*(x^2+y^2)=9=>x^2+y^2=33(x2+y2)=9x2+y2=3

Dec 27, 2015

x^2 + y^2 = 3x2+y2=3

Explanation:

By applying the sum of cubes formula together with the given equations:

5 = x^3 + y^3 = (x+y)(x^2-xy+y^2) = 2(x^2 + y^2 - xy)5=x3+y3=(x+y)(x2xy+y2)=2(x2+y2xy)

=> x^2 + y^2 - xy= 5/2x2+y2xy=52

=>x^2 + y^2 = 5/2 + xy" "("*")x2+y2=52+xy (*)

Now, by cubing the first given equation, we get

(x+y)^3 = 2^3(x+y)3=23

=>x^3 + 3x^2y + 3xy^2 + y^3 = 8x3+3x2y+3xy2+y3=8

=> (x^3 + y^3) + 3xy(x + y) = 8(x3+y3)+3xy(x+y)=8

Substituting in our known values for x+yx+y and x^3 + y^3x3+y3, we obtain

=> 5 + 3xy*2 = 85+3xy2=8

=> 6xy = 36xy=3

=> xy = 1/2xy=12

Substituting this back into ("*")(*):

x^2 + y^2 = 5/2 + 1/2x2+y2=52+12

:. x^2 + y^2 = 3