How can I evaluate the integral intx^2e^(4x)dx?

1 Answer
Jan 31, 2015

I would use integration by parts where you have:

intf(x)*g(x)dx=F(x)*g(x)-intF(x)*g'(x)dx

Where:

F(x)=intf(x)dx

g'(x) is the derivative of g(x)

I'll choose:

f(x)=e^(4x) and
g(x)=x^2

Integrating you get:

intx^2e^(4x)dx=x^2e^(4x)/4-int2xe^(4x)/4dx=
=x^2e^(4x)/4-intxe^(4x)/2dx=
=x^2e^(4x)/4-1/2intxe^(4x)dx= and by parts again:
=x^2e^(4x)/4-1/2[xe^(4x)/4-int1e^(4x)/4dx]=
=x^2e^(4x)/4-xe^(4x)/8+e^(4x)/32+c=
=e^(4x)(x^2/4-x/8+1/32)+c