How can you use trigonometric functions to simplify 6 e^( ( 23 pi)/12 i ) 6e23π12i into a non-exponential complex number?

1 Answer
Nov 15, 2016

6e^(i(23pi)/12)=(3(sqrt6+sqrt2))/2-i(3(sqrt6-sqrt2))/26ei23π12=3(6+2)2i3(62)2

Explanation:

A complex number a+iba+ib in polar form can be written as rcostheta+irsinthetarcosθ+irsinθ

and using series expansion, it can also be written as re^(itheta)reiθ

Hence 6e^(i(23pi)/12)=6cos((23pi)/12)+i6sin((23pi)/12)6ei23π12=6cos(23π12)+i6sin(23π12)

= 6cos(2pi-pi/12)+i6sin(2pi-pi/12)6cos(2ππ12)+i6sin(2ππ12)

= 6cos(pi/12)-i6sin(pi/12)6cos(π12)i6sin(π12)

= 6xx(sqrt6+sqrt2)/4-6i(sqrt6-sqrt2)/46×6+246i624

= (3(sqrt6+sqrt2))/2-i(3(sqrt6-sqrt2))/23(6+2)2i3(62)2