How do I complete the square?

1 Answer
Oct 23, 2015

ax^2+bx+c = a(x+b/(2a))^2 + (c - b^2/(4a))ax2+bx+c=a(x+b2a)2+(cb24a)

The secret is that b/(2a)b2a bit

Explanation:

Suppose you are given a quadratic equation to solve:

2x^2-3x-2 = 02x23x2=0

..which is in the form..

ax^2+bx+c = 0ax2+bx+c=0 with a = 2a=2, b=-3b=3 and c=-2c=2

b/(2a) = -3/4b2a=34

So we find:

2(x-3/4)^2 = 2(x^2-(2*x*3/4)+(3/4)^2)2(x34)2=2(x2(2x34)+(34)2)

=2(x^2-(3x)/2+9/16)=2(x23x2+916)

=2x^2-3x+9/8=2x23x+98

So:

2(x-3/4)^2-25/8 = 2(x-3/4)^2-9/8-22(x34)2258=2(x34)2982

=2x^2-3x+9/8-9/8-2=2x23x+98982

=2x^2-3x-2=2x23x2

So:

2x^2-3x-2 = 02x23x2=0

turns into:

2(x-3/4)^2-25/8 = 02(x34)2258=0

Hence:

(x-3/4)^2 = 25/16(x34)2=2516

So:

x-3/4 = +-sqrt(25/16) = +-5/4x34=±2516=±54

and

x = 3/4+-5/4x=34±54