How do I complete the square?
1 Answer
Oct 23, 2015
ax^2+bx+c = a(x+b/(2a))^2 + (c - b^2/(4a))ax2+bx+c=a(x+b2a)2+(c−b24a)
The secret is that
Explanation:
Suppose you are given a quadratic equation to solve:
2x^2-3x-2 = 02x2−3x−2=0
..which is in the form..
ax^2+bx+c = 0ax2+bx+c=0 witha = 2a=2 ,b=-3b=−3 andc=-2c=−2
b/(2a) = -3/4b2a=−34
So we find:
2(x-3/4)^2 = 2(x^2-(2*x*3/4)+(3/4)^2)2(x−34)2=2(x2−(2⋅x⋅34)+(34)2)
=2(x^2-(3x)/2+9/16)=2(x2−3x2+916)
=2x^2-3x+9/8=2x2−3x+98
So:
2(x-3/4)^2-25/8 = 2(x-3/4)^2-9/8-22(x−34)2−258=2(x−34)2−98−2
=2x^2-3x+9/8-9/8-2=2x2−3x+98−98−2
=2x^2-3x-2=2x2−3x−2
So:
2x^2-3x-2 = 02x2−3x−2=0
turns into:
2(x-3/4)^2-25/8 = 02(x−34)2−258=0
Hence:
(x-3/4)^2 = 25/16(x−34)2=2516
So:
x-3/4 = +-sqrt(25/16) = +-5/4x−34=±√2516=±54
and
x = 3/4+-5/4x=34±54