How do I divide sqrt(300x^18)/sqrt(2x)?

1 Answer
Mar 6, 2017

5 sqrt(6x^17) = 5sqrt(6)x^(17/2) assuming x is positive,

otherwise (5 sqrt(6)sqrt(x^18))/sqrt(x)

Explanation:

Use the square root property: (sqrt(m))/(sqrt(n)) = sqrt(m/n)

(sqrt(300 x^18))/(sqrt(2x)) = sqrt((300 x^18)/(2x)) = sqrt((150x^18)/x)

Use the exponent rules: x^m/x^n = x^(m-n) and x^mx^n = x^(m+n)

sqrt((150x^18)/x)= sqrt(150x^17)

Use the square root property: sqrt(m*n) = sqrt(m) sqrt(n)

= sqrt(25 * 6 x^17) = sqrt(25)sqrt(6) sqrt(x^17)

= 5 sqrt(6x^17)

Remember that sqrt(m) = m^(1/2)

So 5 sqrt(6x^17) = 5sqrt(6)x^(17/2)