How do I evaluate int(t +5) sin (t+5) dt?

1 Answer
Jan 31, 2015

The answer is: -(t+5)cos(t+5)+sin(t+5)+c

This integral has to be done with the theorem of the integration by parts, that says:

intf(t)g'(t)dt=f(t)g(t)-intg(t)f'(t)dx

We can assume that f(t)=t+5 and g'(t)dt=sin(t+5)dt.

So:

g(t)=int(sin(t+5)dt)=-cos(t+5),

f'(x)dx=1dx.

Then:

int(t+5)sin(t+5)dt=(t+5)(-cos(t+5))-int-cos(t+5)1dt=-(t+5)cos(t+5)+sin(t+5)+c