int (z+1)e^(3z) dz = int z*e^(3z)dz + int e^(3z)dz∫(z+1)e3zdz=∫z⋅e3zdz+∫e3zdz
Second component is trivial
int e^(3z) dz = int e^(3z)/3 d(3z) = e^(3z)/3 ∫e3zdz=∫e3z3d(3z)=e3z3
For the first component, we use integration by part:
Recall: Integration by part: int u(dv) = uv - int v(du) ∫u(dv)=uv−∫v(du)
let u = zu=z and dv = e^(3z)dv=e3z.
If dv = e^(3z)dv=e3z, then v = e^(3z)/3 v=e3z3
(from second component)
Thus, int z*e^(3z) dz = z*e^(3z)/3 - int e^(3z) dz ∫z⋅e3zdz=z⋅e3z3−∫e3zdz
Put the two component together:
int (z+1)e^(3z) dz ∫(z+1)e3zdz
= int z*e^(3z) dz + int e^(3z)dz =∫z⋅e3zdz+∫e3zdz
= [ z*e^(3z)/3 - int e^(3z) dz] + int e^(3z)dz =[z⋅e3z3−∫e3zdz]+∫e3zdz
= z*e^(3z)/3 + C =z⋅e3z3+C
Hope this help!