How do I evaluate int(z +1) e^(3z) dz(z+1)e3zdz?

1 Answer
Jan 28, 2015

int (z+1)e^(3z) dz = int z*e^(3z)dz + int e^(3z)dz(z+1)e3zdz=ze3zdz+e3zdz

Second component is trivial
int e^(3z) dz = int e^(3z)/3 d(3z) = e^(3z)/3 e3zdz=e3z3d(3z)=e3z3

For the first component, we use integration by part:
Recall: Integration by part: int u(dv) = uv - int v(du) u(dv)=uvv(du)
let u = zu=z and dv = e^(3z)dv=e3z.
If dv = e^(3z)dv=e3z, then v = e^(3z)/3 v=e3z3
(from second component)

Thus, int z*e^(3z) dz = z*e^(3z)/3 - int e^(3z) dz ze3zdz=ze3z3e3zdz

Put the two component together:

int (z+1)e^(3z) dz (z+1)e3zdz
= int z*e^(3z) dz + int e^(3z)dz =ze3zdz+e3zdz
= [ z*e^(3z)/3 - int e^(3z) dz] + int e^(3z)dz =[ze3z3e3zdz]+e3zdz
= z*e^(3z)/3 + C =ze3z3+C

Hope this help!